Comprehensive analysis of wine — from test to taste

Live Webcast: Thursday, October 18, 2012, 9:00 am EDT; 15:00 CEST
Webcast Notes

• Interact with speaker by typing your questions in the “Submit Question” box, located below the slide window.

• You can enlarge the slide window at any time by clicking on the “Enlarge Slides” button, located below the presentation window – the slides will advance automatically throughout the event.

• If you are experiencing technical problems with viewing or hearing the event, please click on the “Help” button, located below the slide window.
Comprehensive analysis of Wine – from test to taste

By Roberta Danzi
Technical Manager
and Responsible for
Quality Management of Unione
Italiana Vini Labs
WINE

Italy, along with France, is the world's largest producer of wine. Wine has always been one of the traditional Italian products, and even though domestic consumption has been reduced to a great extent over the past 50 years, wine remains one of the most important products of the Italian agri-food sector. With regard to the export it is one of the leading products made in Italy in the world.

Some numbers

- Vineyard surface: 664,000 ha
- Italy turnover: 10.7 billions €
- Share of food (Italy): 9%
- Export turnover: 4.4 billions €
- Share of food (export): 13%
- Induced value: 2 billions €
- Supply chain employee: 1.2 milions

Source: Istat, Ismea, Ministero del Lavoro, data 2010/11
Agenda

Unione Italiana Vini
Product Control
Law Compliance
Hygiene and Health
Authenticity and Origin
Technological Quality
Analytical Techniques
Applications
Needs of a Lab
Unione Italiana Vini is...

Association Founded in Milan 1895

Members: about 500, with a turnover of 5 billions euros (equal to 50% of Italian domestic turnover and 60% of exports)

Offices:
- Verona
- Milan
- Rome

Labs:
- Verona
- Siena
- Asti
- Reggio Emilia
- Lecce
The role of Unione Italiana Vini

In the last years, the Food and Beverage industry underwent very important changes affecting the whole production chain.

The market and the mass-media are pressing stakeholders to invest in and improve:
- Quality of products;
- Guarantee of healthiness;
- Typical features;

Legislators translate those expectations, with the objective to protect health and the interest of citizens, with:
- Compulsory rules;
- Voluntary rules;
- International Standards;

The need to standardize processes, including distribution, induces the producer to review its corporate structure, to improve communication with the Market.

Market means all the stakeholders:
- Control bodies
- Institutions
- Large-scale retail traders
- Consumers
Unione Italiana Vini developed its own resources, laboratories and organizational advising, in order to supply to the enterprises some services and to reach some target, working in a self-control logic in synergy with the control agencies (ICQRF - Central Inspectorate for the Protection of the Quality and Fraud Repression of Agri-Food Products, NAS - Anti-Adulteration Group, etc).

The role of Unione Italiana Vini

The core business of our laboratories

- Analysis for **economic transactions**. We aim to be a third party that guarantees and favors the exchange trades;
 (~17,000 samples/year for national trade, ~12,000 samples/year for export trade)

- Monitoring of the **compliance to PDO (Protected Designation of Origin) wines**;
 (~10,000 samples/year)

- Great effort is spent in terms of supporting producers as a guarantee of the **self-control on bulk wine** (HACCP and others). Controls regarding healthiness of wine (hygiene), quality and genuinity;
 (~26,000 samples/year)

- **Monitoring of wine on shelf** for large-scale trade distributors
 (~2,000 samples/year)
Agenda

Unione Italiana Vini

Product Control
Law Compliance
Hygiene and Health
Authenticity and Origin
Technological Quality

Analytical Techniques
Applications
Needs of a Lab
Product control

The analytical protocols are designed to satisfy different requirements

Compliance to Laws
The control aims to check if the product complies to the National Laws and those of the European Community (characteristics needed to identify the product group).

Hygiene and Health
Analysis of organic and inorganic pollutants (exogen or endogen origin).

Authenticity and origin
includes chemical and isotopic analysis to check for presence of forbidden ingredients.

Technological quality
includes analysis made to check the quality characteristics of the product and of the production process.
Compliance to Law

Analysis

• Alcoholic strength
• Total Acidity
• Sugars
• Dry extract deduced sugars
• Volatile acidity
• Ashes

“Classic” Analytical Techniques

• Densitometry*
• Volumetric analysis (Titration)*
• Gravimetric analysis*

• FTIR

*official methods
Hygiene and health

Exogenous pollutants

| Preservatives and additives (sorbic acid, ascorbic acid) | They can be used and there is a law limit (200 mg/l sorbic, 250 mg/ ascorbic) *
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanide Derivatives</td>
<td>Use of potassium ferrocyanide to lower heavy metal content.</td>
</tr>
</tbody>
</table>
| Ochratoxin A | mycotoxin produced by molds
Content in wine <2ppb |
| Glycols | Used in production to refrigerate. Pollution in case of breakage of the plants |
| Residual pesticides | Vineyard treatment |
| Chlorides, sulfates, phosphates, nitrates | Partly endogenous, partly from oenological practice* |
| **Heavy metals** (Lead, Copper, Zinc, Cadmium, Chromium) | Pollution from vineyard treatment (Cu)
Pollution from production equipment (Pb, Cd, Cr)
Partly endogenous (Zn) |

*oenological practice: see Reg CE 606/2009
Hygiene and health

<table>
<thead>
<tr>
<th>Endogenous pollutants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>Methanol is formed from pectins (mostly present on fruit skin), during alcoholic fermentation. In Italy law limit: 0,20 ml/100mlTA for white wine 0,25 ml/100mlTA for red wine</td>
</tr>
<tr>
<td>Ethyl carbamate</td>
<td>Urea can spontaneously react with the alcohol in wine to form EC. Urea come from metabolized amino acids (arginine)#</td>
</tr>
<tr>
<td>Biogenic amines</td>
<td>Biogenic amines are important because they contain a health risk for sensitive individuals. They can be an alert of not hygienic condition in production chain</td>
</tr>
</tbody>
</table>

see more about EC in food : The EFSA Journal (2007) 551, 1-44
Hygiene and health

| **Allergenic compounds** |
| Dir. 2003/89/CE and Reg. 2012/579/CE |
|--------------------------|-----------------------------------|
| **Sulphur dioxide** | Commonly used as preservative |
| | Content in wine limited (reg CE 606/2009) |
| **Milk derivatives (casein)** | Commonly used as fining agent, mostly in white wine. |
| **Egg derivatives** | Albumin is commonly used as fining |
| (ovalbumin, lysozyme) | agent, mostly in red wine. |
| | Lysozyme is used to delay or prevent |
| | malolactic fermentation. |

oenological practice: see Reg CE 606/2009
Authenticity and origin

Illegal practices

<table>
<thead>
<tr>
<th>Search of exogenous glycerol markers:</th>
<th>3-Methoxypropane-1,2-diol and Cyclic Diglycerols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search of exogenous water:</td>
<td>Determination of isotopic Ratio 18O/16O</td>
</tr>
<tr>
<td>Search of exogenous sugars:</td>
<td>Determination of isotopic ratio 13C/12C of ethanol</td>
</tr>
<tr>
<td></td>
<td>Determination of isotopic ratio D/H of ethanol</td>
</tr>
</tbody>
</table>
Technological quality

Chemical-physical analysis

<table>
<thead>
<tr>
<th>Organic acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
</tr>
<tr>
<td>Chromatic characteristics and polyphenolic profiles</td>
</tr>
<tr>
<td>Secondary fermentation compounds</td>
</tr>
<tr>
<td>Profiles of volatile compounds (flavors profiles)</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Molds, total bacteria counts, yeasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific searches: brettanomyces, lactic bacteria, acetic bacteria</td>
</tr>
</tbody>
</table>
Technological quality

Sensorial analysis
Complementing and supporting chemical and microbiological analysis of wine-growing and production, sensorial analysis assesses the quality level of productions.
Agenda

Unione Italiana Vini
Product Control
Law Compliance
Hygiene and Health
Authenticity and Origin
Technological Quality
Analytical Techniques
Applications
Needs of a Lab
Analytical Techniques

SPECTROSCOPY
- UV-VIS spectroscopy
- Atomic Absorption spectroscopy
- ICP-MS

CHROMATOGRAPHY (and hybrid techniques)
- HPLC (UV-DAD-RI-FLD)
- GC - FID
- GC - MS
- GC – MS/MS
- HPLC – MS/MS

ISOTOPE TECHNIQUES
- IRMS
- RMN
Agenda

Unione Italiana Vini
Product Control
 Law Compliance
 Hygiene and Health
 Authenticity and Origin
 Technological Quality
Analytical Techniques
Applications
Needs of a Lab
Applications

SPECTROSCOPY

UV-Vis
- Cyanide derivatives
- Chromatic characteristics

ELISA
- Casein
- Albumin
Applications

SPECTROSCOPY

<table>
<thead>
<tr>
<th>Method</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>• Metals (Na, K, Ca, Mg, Cu, Zn, Fe, Li)</td>
</tr>
</tbody>
</table>
| **ICP-MS** | • Metals as AA
 | • Pb, Cr, Cd, Ni, Mn, Ni, Co, Au, Ag, As, Hg, Al and more |
Applications

Chromatography

<table>
<thead>
<tr>
<th>HPLC</th>
<th>ionic chromatography</th>
</tr>
</thead>
</table>
| • sorbic acid, ascorbic acid (UV)
• Organic acids (UV+RID)
• Polyphenolic profiles (DAD)
• Sugars (RID)
• Ochratoxin A (FLD)
• Biogenic Amines (UV)
• Lysozyme (UV+FLD) | • Chlorides, sulfates, phosphates, nitrates |
Applications

CHROMATOGRAPHY

<table>
<thead>
<tr>
<th>GC - FID</th>
<th>GC - MS</th>
</tr>
</thead>
</table>
| • Methanol and secondary fermentation compounds
 • Minor sugars in must (sucrose-maltose) | • Ethyl carbamate
 • Glycols
 • Exogenous glycerol markers
 • Profiles of volatile compounds (flavors profiles) |
Applications

CHROMATOGRAPHY

GC – MS/MS
HPLC – MS/MS

• Residual pesticides
Applications

ISOTOPIC TECHNIQUES

<table>
<thead>
<tr>
<th>Method</th>
<th>Application</th>
<th>Isotopic Ratio</th>
</tr>
</thead>
</table>
| **IRMS** | Search of exogenous water:
Determination of isotopic Ratio $^{18}\text{O}/^{16}\text{O}$ | |
| | Search of exogenous sugars:
Determination of isotopic ratio $^{13}\text{C}/^{12}\text{C}$ of ethanol | |
| **NMR** | Search of exogenous sugars:
Determination of isotopic ratio D/H of ethanol | |
Agenda

Unione Italiana Vini
Product Control
Law Compliance
Hygiene and Health
Authenticity and Origin
Technological Quality
Analytical Techniques
Applications
Needs of a Lab
A high throughput laboratory, such as UIV lab, needs to find methods for highest efficiency.

When we choose a method our goals are:

- Compliance to the OIV* official method requirements (if they exists)
- Sample preparation: time consumption, recovery performance, automation suitability;
- Instrumental analysis: time consumption, sensitivity, automation suitability;

Official methods of analysis for wine

For EU they are established by:

The International Organisation of Vine and Wine (OIV)

And collected in the publication: COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS – OIV (www.oiv.int)

* The OIV is an intergovernmental organisation of a scientific and technical nature of recognised competence for its works concerning vines, wine, wine-based beverages, table grapes, raisins and other vine-based products.
Case history

The evolution of the method to detect residual pesticides

<table>
<thead>
<tr>
<th>Sample preparation</th>
<th>Instrumental equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid-liquid extraction</td>
<td>GC</td>
</tr>
<tr>
<td>• Low recovery factor</td>
<td>• LOQ medium-high (50 ppb or more)</td>
</tr>
<tr>
<td>• Time consuming (2-h or more)</td>
<td>• Many analysis to check different families of compound</td>
</tr>
<tr>
<td>• Matrix effect</td>
<td>• Non volatile compounds must be derivatized</td>
</tr>
<tr>
<td>• NO automation</td>
<td></td>
</tr>
<tr>
<td>SPE extraction</td>
<td>ECD-FPD-NPD</td>
</tr>
<tr>
<td>• Good recovery factor</td>
<td></td>
</tr>
<tr>
<td>• Time consuming*</td>
<td></td>
</tr>
<tr>
<td>• Low repeatability*</td>
<td></td>
</tr>
<tr>
<td>• Automation possible</td>
<td></td>
</tr>
<tr>
<td>*with automation this is better</td>
<td></td>
</tr>
<tr>
<td>QuEChERS</td>
<td>GC-MS</td>
</tr>
<tr>
<td>• Good recovery factor</td>
<td>• LOQ decreased (10 ppb or more)</td>
</tr>
<tr>
<td>• Good repeatability</td>
<td>• Detection of many families with 1 analysis</td>
</tr>
<tr>
<td>• Quite fast</td>
<td>• Qualitative identification improved</td>
</tr>
<tr>
<td>• NO Automation</td>
<td>• Non volatile compounds must be derivatized</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC-MS/MS</td>
</tr>
<tr>
<td></td>
<td>• LOQ decreased a lot (1 ppb)</td>
</tr>
<tr>
<td></td>
<td>• Numbers of amenable compounds increases significantly</td>
</tr>
<tr>
<td></td>
<td>• LC allows the analysis of non volatile compounds</td>
</tr>
<tr>
<td></td>
<td>• Qualitative identification improved</td>
</tr>
</tbody>
</table>

The evolution of the method to detect residual pesticides.
Conclusion

Many different analytical techniques are applied in a modern, high throughput oenological laboratory like Unione Italiana Vini.

Wine is a very complex matrix, that can be a real challenge for the analytical chemist and offering ideas for continuous development.

Thank you for your attention

Unione Italiana Vini
lab.verona@uiv.it
www.uiv.it
Type your question in the “Submit Question” box below your slide window.
Thank You

We Need Your Feedback!

Please complete the post-webcast evaluation form that will immediately appear in your window.